Convergence of Multi-pass Large Margin Nearest Neighbor Metric Learning

نویسندگان

  • Christina Göpfert
  • Benjamin Paassen
  • Barbara Hammer
چکیده

Large margin nearest neighbor classification (LMNN) is a popular technique to learn a metric that improves the accuracy of a simple knearest neighbor classifier via a convex optimization scheme. However, the optimization problem is convex only under the assumption that the nearest neighbors within classes remain constant. In this contribution we show that an iterated LMNN scheme (multi-pass LMNN) is a valid optimization technique for the original LMNN cost function without this assumption. We further provide an empirical evaluation of multi-pass LMNN, demonstrating that multi-pass LMNN can lead to notable improvements in classification accuracy for some datasets and does not necessarily show strong overfitting tendencies as reported before.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two dimensional Large Margin Nearest Neighbor for Matrix Classification

Matrices are a common form of data encountered in a wide range of real applications. How to efficiently classify this kind of data is an important research topic. In this paper, we propose a novel distance metric learning method named two dimensional large margin nearest neighbor (2DLMNN), for improving the performance of k-nearest neighbor (KNN) classifier in matrix classification. Different f...

متن کامل

Large Margin Multi-Task Metric Learning

Multi-task learning (MTL) improves the prediction performance on multiple, different but related, learning problems through shared parameters or representations. One of the most prominent multi-task learning algorithms is an extension to support vector machines (svm) by Evgeniou et al. [15]. Although very elegant, multi-task svm is inherently restricted by the fact that support vector machines ...

متن کامل

Liquid-liquid equilibrium data prediction using large margin nearest neighbor

Guanidine hydrochloride has been widely used in the initial recovery steps of active protein from the inclusion bodies in aqueous two-phase system (ATPS). The knowledge of the guanidine hydrochloride effects on the liquid-liquid equilibrium (LLE) phase diagram behavior is still inadequate and no comprehensive theory exists for the prediction of the experimental trends. Therefore the effect the ...

متن کامل

Mahalanobis Distance Learning for Person Re-identification

Recently, Mahalanobis metric learning has gained a considerable interest for single-shot person re-identification. The main idea is to build on an existing image representation and to learn a metric that reflects the visual camera-to-camera transitions, allowing for a more powerful classification. The goal of this chapter is twofold. We first review the main ideas of Mahalanobis metric learning...

متن کامل

Large Margin Nearest Neighbor Classification using Curved Mahalanobis Distances

We consider the supervised classification problem of machine learning in Cayley-Klein projective geometries: We show how to learn a curved Mahalanobis metric distance corresponding to either the hyperbolic geometry or the elliptic geometry using the Large Margin Nearest Neighbor (LMNN) framework. We report on our experimental results, and further consider the case of learning a mixed curved Mah...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016